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OBJECTIVE — We investigated whether metabolic biomarkers and single nucleotide poly-
morphisms (SNPs) improve diabetes prediction beyond age, anthropometry, and lifestyle risk
factors.

RESEARCH DESIGN AND METHODS — A case-cohort study within a prospective
study was designed. We randomly selected a subcohort (n � 2,500) from 26,444 participants,
of whom 1,962 were diabetes free at baseline. Of the 801 incident type 2 diabetes cases identified
in the cohort during 7 years of follow-up, 579 remained for analyses after exclusions. Prediction
models were compared by receiver operatoring characteristic (ROC) curve and integrated dis-
crimination improvement.

RESULTS — Case-control discrimination by the lifestyle characteristics (ROC-AUC: 0.8465) im-
proved with plasma glucose (ROC-AUC: 0.8672, P � 0.001) and A1C (ROC-AUC: 0.8859, P �
0.001). ROC-AUC further improved with HDL cholesterol, triglycerides, �-glutamyltransferase,
and alanine aminotransferase (0.9000, P � 0.002). Twenty SNPs did not improve discrimination
beyond these characteristics (P � 0.69).

CONCLUSIONS — Metabolic markers, but not genotyping for 20 diabetogenic SNPs, im-
prove discrimination of incident type 2 diabetes beyond lifestyle risk factors.
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A ccurate identification of individuals
who are at increased risk for type 2
diabetes is a requirement for a tar-

geted prevention. We therefore tested
whether metabolic and genetic markers
add substantial prognostic information
to age, anthropometry, and lifestyle
characteristics.

RESEARCH DESIGN AND
METHODS — TheEuropeanProspective
Investigation into Cancer and Nutrition
(EPIC)-Potsdam study involves 27,548

participants (16,644 women, mainly aged
35–65 years, and 10,904 men, mainly
aged 40 – 65 years) recruited from the
general population in Potsdam, Germany,
between 1994 and 1998. Follow-up
questionnaires were sent out every 2–3
years to identify incident cases of type 2
diabetes (response rates 93–97%), and
self-reports were verified by question-
naires mailed to physicians. Informed
consent was obtained from participants;
approval was given by the ethics commit-
tee of the State of Brandenburg, Germany.

A prospective case-cohort study was
designed (1) (supplemental Fig. 1, which
can be found in the online appendix [avail-
able at http://care.diabetesjournals.org/cgi/
content/full/dc09-0197/DC1]). Of 2,500
individuals randomly selected from 26,444
participants with collected blood, 1,962
remained after exclusion of prevalent di-
abetes, self-reported but unverified diabe-
tes during follow-up, missing biomarker
data, abnormal plasma glucose, or more
than four missing genotypes. Of 801 in-
cident cases identified in the full cohort
with blood samples (mean follow-up 7.1
years), 579 remained for analyses after
exclusions.

We used baseline information on
age, waist circumference, height, his-
tory of hypertension, physical activity,
smoking, and consumption of red meat,
whole-grain bread, coffee, and alcohol
to compute the German Diabetes Risk
Score (DRS), a prediction model previ-
ously described (2). Measurement of
glucose, HDL cholesterol, triglycerides,
�-glutamyltransferase, alanine amino-
transferase, high-sensitivity C-reactive
protein (hs-CRP), and A1C followed stan-
dard procedures (1). Total adiponectin
was measured with an ELISA (LINCO Re-
search, St. Charles, MO). Genotyping of
20 single nucleotide polymorphisms
(SNPs) related to diabetes risk (3– 6)
(supplemental Tables 1–2) was per-
formed with TaqMan technology (Ap-
plied Biosystems, Foster City, CA). The
genotyping error was �0.5%, and geno-
type distributions were in Hardy-
Weinberg equilibrium (P � 0.05). We
computed an unweighted count genetic
score assuming an additive genetic model
for each SNP, applying a linear weighting
of 0, 1, and 2 to genotypes containing 0,
1, or 2 risk alleles, respectively. Scores for
individuals with missing genotypes were
standardized to those for individuals with
complete data (7).

We evaluated different prediction
models through receiver operatoring
characteristics (ROCs) based on logistic
regression models comparing the area
under the curve (AUC) of the fuller model
with that of the sparser model (8).
Model calibration was tested by Hosmer-
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Lemeshow tests (9). Reclassification was
evaluated by the integrated discrimina-
tion improvement (IDI) (10). Analyses
were performed with SAS (version 9.1;
SAS Institute, Cary, NC). P values are
two-tailed; P � 0.05 was considered sta-
tistically significant.

RESULTS — Baseline characteristics of
the random subcohort and incident cases
are presented in supplemental Table 3.
ROC-AUC increased significantly when
A1C or glucose was incorporated into a
model with the German DRS (Table 1),
most notably for A1C (from 0.8464 to
0.8862). P values for Hosmer-Lemeshow

tests indicated better model calibration
when A1C (P � 0.1181) or glucose (P �
0.3823) was included compared with a
model with the German DRS alone (P �
0.0157). Measuring both glucose and A1C
improved case-control discrimination.
Also, blood lipids, �-glutamyltransferase,
and alanine aminotransferase significantly
improved discrimination beyond the Ger-
man DRS, A1C, and glucose (ROC-AUC:
0.9000). Moreover, IDI, as a marker of im-
proved risk classification, was significantly
different from zero (Table 1). In contrast to
hs-CRP, additional information on adi-
ponectin improved ROC-AUC. However,
relative IDI was rather small (1.5%).

Diabetes risk increased with increas-
ing number of prevalent risk alleles
(supplemental Fig. 2). When genetic in-
formation was included along with the
German DRS and metabolic markers, im-
provements of ROC-AUC and IDI were
small and nonsignificant (Table 1).

CONCLUSIONS — Numerous dia-
betes prediction models have been devel-
oped, but few studies have investigated
whether metabolic markers improve pre-
diction beyond conventional risk factors.
In the Atherosclerosis Risk in Communi-
ties study, clinical variables combined
with fasting plasma glucose discriminated

Table 1—Relative contribution of the German DRS and biochemical and genetic markers to prediction of type 2 diabetes risk

ROC* IDI†

C statistic (95% CI) P Absolute IDI (95% CI)
Relative
IDI (%)

DRS only‡ 0.8465 (0.8299–0.8630) Ref. Ref. Ref.
DRS and A1C 0.8859 (0.8716–0.9003) �0.0001 0.0974 (0.0792–0.1155) 34.11
DRS and glucose 0.8672 (0.8515–0.8830) �0.0001 0.0553 (0.0407–0.0699) 19.37

DRS and A1C 0.8859 (0.8716–0.9003) Ref. Ref. Ref.
DRS, A1C, and glucose 0.8926 (0.8785–0.9067) 0.0040 0.0230 (0.0135–0.0325) 6.01

DRS and glucose 0.8672 (0.8515–0.8830) Ref. Ref. Ref.
DRS, glucose, and A1C 0.8926 (0.8785–0.9067) �0.0001 0.0651 (0.0506–0.0797) 19.11

DRS, glucose, and A1C 0.8926 (0.8785–0.9067) Ref. Ref. Ref.
DRS, glucose, A1C, triglycerides, HDL cholesterol,

�-glutamyltransferase, and alanine
aminotransferase 0.9000 (0.8862–0.9137) 0.0022 0.0223 (0.0142–0.0304) 5.50

DRS, glucose, A1C, and genetic markers§ 0.8928 (0.8787–0.9070) 0.7361 0.0014 (�0.0010–0.0039) 0.36

DRS, glucose, A1C, triglycerides, HDL cholesterol,
�-glutamyltransferase, and alanine
aminotransferase 0.9000 (0.8862–0.9137) Ref. Ref. Ref.

DRS, glucose, A1C, triglycerides, HDL cholesterol,
�-glutamyltransferase, alanine aminotransferase,
and adiponectin 0.9023 (0.8887–0.9158) 0.0471 0.0064 (0.0022–0.0107) 1.50

DRS, glucose, A1C, triglycerides, HDL cholesterol,
�-glutamyltransferase, alanine aminotransferase,
and hs-CRP 0.9016 (0.8880–0.9151) 0.1523 0.0029 (�0.0007–0.0066) 0.69

DRS, glucose, A1C, triglycerides, HDL cholesterol,
�-glutamyltransferase, alanine aminotransferase,
and genetic markers 0.9002 (0.8865–0.9140) 0.6868 0.0015 (�0.0010–0.0039) 0.34

*The ROC curve is a plot of sensitivity versus false-positive rate across all possible cut points for a continuous predictor or prediction model. The area under the ROC
curve (C statistic) is a measure of discrimination between case patients and control participants based on ranks and reflects the probability that the predicted risk
is higher for a case subject than for a control subject. It ranges from 0.5 (no predictive ability) to a theoretical maximum of 1 (perfect discrimination)—the latter
achieved if the scores or predicted risks for all case subjects are higher than those for all control subjects. †IDI is the difference between two models in discrimination
slopes, which reflect the mean difference in predicted risk between case and control subjects. Instead of the difference, relative IDI expresses the discrimination slope
of the more extensive model (e.g., including a new marker) as proportional increase compared with the discrimination slope of the basic model. ‡The German DRS
combines baseline information on several risk factors to estimate the risk of developing type 2 diabetes (ref. 2). It is computed as follows: German DRS � 7.4 � waist
(cm) � 2.4 � height (cm) � 4.3 � age (years) � 46 � hypertension (self-report) � 49 � red meat (each 150 g/day) � 9 � whole-grain bread (each 50 g/day) �
4 � coffee (each 150 g/day) � 20 � moderate alcohol (between 10 and 40 g/day) � 2 � physical activity (h/week) � 24 � former smoker � 64 � current heavy
smoker (�20 cigarettes/day). §Unweighted count genetic score of 20 SNPs assuming an additive genetic model for each SNP and applying a linear weighting of 0,
1, and 2 to genotypes containing 0, 1, or 2 risk alleles. Participants were excluded if they had five or more genotypes missing. Scores for individuals with missing
genotypes were standardized to those of individuals with complete data.
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better compared with clinical variables
only (11). Further improvement in dis-
crimination was observed with HDL
cholesterol and triglycerides. In the Fra-
mingham Offspring Study, a model in-
volving additional information on
hypertension, fasting plasma glucose,
HDL cholesterol, and triglycerides per-
formed substantially better than a model
including age, sex, BMI, and parental his-
tory (12). Our results support and extend
these findings by indicating that a com-
prehensive basic model including impor-
tant lifestyle risk factors such as physical
activity, smoking, alcohol consumption,
and diet is significantly improved by glu-
cose, A1C, HDL cholesterol, triglycerides,
and liver enzymes but not hs-CRP, adi-
ponectin, or genetic markers.

Our observation that multiple SNPs
do not substantially improve discrimina-
tion beyond age, sex, and clinical markers
confirms previous studies (7,13–15). We
extended their results by using a compre-
hensive set of anthropometric, nutri-
tional, and lifestyle variables in the basic
model; by including additional biomark-
ers (adiponectin, hs-CRP, and A1C); and
by using the full set of currently con-
firmed diabetogenic SNPs. It should be
noted that the prospective design ren-
dered it necessary to exclude prevalent di-
abetes cases at baseline. Thus, results
reflect genetic prediction in middle-
aged individuals but not prediction at
birth. Furthermore, we did not consider
gene-gene interactions.

In conclusion, our study indicates that
both plasma glucose and A1C considerably
improve discrimination of incident type 2
diabetes by age, anthropometry, and life-
style characteristics (DRS). HDL choles-
terol, triglycerides, �-glutamyltransferase,
and alanine aminotransferase, but not 20
diabetogenic SNPs, further improve
discrimination.
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ses, and of Frank Döring, who was involved in
the genetic analyses. We also thank Kay Beh-
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